SequenceLDhot: detecting recombination hotspots

نویسنده

  • Paul Fearnhead
چکیده

MOTIVATION There is much local variation in recombination rates across the human genome--with the majority of recombination occurring in recombination hotspots--short regions of around approximately 2 kb in length that have much higher recombination rates than neighbouring regions. Knowledge of this local variation is important, e.g. in the design and analysis of association studies for disease genes. Population genetic data, such as that generated by the HapMap project, can be used to infer the location of these hotspots. We present a new, efficient and powerful method for detecting recombination hotspots from population data. RESULTS We compare our method with four current methods for detecting hotspots. It is orders of magnitude quicker, and has greater power, than two related approaches. It appears to be more powerful than HotspotFisher, though less accurate at inferring the precise positions of the hotspot. It was also more powerful than LDhot in some situations: particularly for weaker hotspots (10-40 times the background rate) when SNP density is lower (< 1/kb). AVAILABILITY Program, data sets, and full details of results are available at: http://www.maths.lancs.ac.uk/~fearnhea/Hotspot.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Inferring Recombination and Association Mapping in Populations

A current high priority research goal is to understand how genetic variations influence complex genetic diseases (or more generally traits). Recombination is an important biological and genetic process that plays a major role in the logic behind association mapping, a currently intensely studied method widely hoped to efficiently find genes (alleles) associated with complex diseases. Recently, ...

متن کامل

A new method for detecting human recombination hotspots and its applications to the HapMap ENCODE data.

Computational detection of recombination hotspots from population polymorphism data is important both for understanding the nature of recombination and for applications such as association studies. We propose a new method for this task based on a multiple-hotspot model and an (approximate) log-likelihood ratio test. A truncated, weighted pairwise log-likelihood is introduced and applied to the ...

متن کامل

Detecting Recombination Hotspots from Patterns of Linkage Disequilibrium

With recent advances in DNA sequencing technologies, it has become increasingly easy to use whole-genome sequencing of unrelated individuals to assay patterns of linkage disequilibrium (LD) across the genome. One type of analysis that is commonly performed is to estimate local recombination rates and identify recombination hotspots from patterns of LD. One method for detecting recombination hot...

متن کامل

Finding haplotype block boundaries by using the minimum-description-length principle.

We present a method for detecting haplotype blocks that simultaneously uses information about linkage-disequilibrium decay between the blocks and the diversity of haplotypes within the blocks. By use of phased single-nucleotide polymorphism data, our method partitions a chromosome into a series of adjacent, nonoverlapping blocks. The partition is made by choosing among a family of Markov models...

متن کامل

Bayesian inference of shared recombination hotspots between humans and chimpanzees.

Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 22 24  شماره 

صفحات  -

تاریخ انتشار 2006